C	Supar_20			by:- sudhir jainam		
)	uper-3 _(NM-I)	U	L	aily Practic Target IIT		
Class	s:XI Tin	ne: 60 Min.		M.M:70	DPP. NO7	
	[SIN		RT-A	E TYPE]		
Q.1 to	o Q.4 has four choice	es (A), (B), (C), (D) out	of which ONLY ONE	is correct.	[4 × 3 = 12]	
Q.1	If $\frac{2}{\log_b x} = \frac{1}{\log_a x}$	$\frac{1}{x} + \frac{1}{\log_c x}$, where a, b	b, c, x. belong to $(1, \infty)$), then		
	(A) $2b = a + c$	(B) $\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$	(C) $b^2 = ac$	(D) $b^2 = acx$		
Q.2	If $x^2 + y^2 = 14xy$ and $2 \log(k(x+y)) = (\log x + \log y)$, then the value of k is					
	(A) $\frac{1}{16}$	(B) $\frac{1}{4}$	(C) 2 log 2	(D) $\frac{\log 14}{2}$		
Q.3	Given that $\log_{10}(4$ (A) 4.252	252) = 3.6286 then an (B) 2.52	tilog ₁₀ (0.6286) is (C) 3.62	(D) 6.286		
Q.4	If $13^{\log_{10} x} = 338 - (A) 13$	$-x^{\log_{10}13}$, then the value (B) 15	ue of (x + 2) is equal t (C) 17	o (D) 102		
Q.5 to	o Q.8 has four choice	es (A), (B), (C), (D) out	of which ONLY ONE	is correct.	$[4 \times 4 = 16]$	
Q.5	If $\log_a 4 = c$, $\log_b a = -1$ and $\log_1 b = -1$ then $(4a^2 + b^2 + c^2)$ equals					
	(A) 7	(B) 8	(C) 9	(D) 10		
Q.6	Let $a = \frac{\log_{27} 8}{\log_3 2}$, $b = \left(\frac{1}{2^{\log_2 5}}\right) \left(\frac{1}{5^{\log_5(0.1)}}\right)$ and $c = \frac{\log_4 27}{\log_4 3}$, then the value of $(a + b \div c)$, is					
	(A) 1	(B) $\frac{4}{3}$	(C) $\frac{5}{3}$	(D) $\frac{2}{3}$		
Q.7	If $7 \log_p \left(\frac{16}{15}\right) + 5$	$\log_{p}\left(\frac{25}{24}\right) + 3\log_{p}\left(\frac{81}{80}\right)$	$\left(\frac{1}{0}\right) = 8$, then p^{16} equal	ls		
	(A) 16	(B) 1	(C) 2	(D) 4		
Q.8		d $\log_{30}(5) = \beta$, then lo (B) $3(1 + \alpha + \beta)$		(D) 3 (1 – a	2 – β)	
	[MUL		RECT CHOIC	E TYPE]		

Q.9The equation $|x - 10| \log_2(x - 3) = 2 (x - 10)$ has
(A) no prime solution
(C) two rational solutions(B) only one natural solution
(D) no composite solution

Q.10 Which two of the following equations have the same solution

(A) $x^{\log \sqrt{x}(x-2)} = 9$ (B) $\log_7(2^x - 1) + \log_7(2^x - 7) = 1$ (C) $\log_4(x+12) \cdot \log_x 2 = 1$ (D) $\log_3(1 + \log_3(2^x - 7)) = 1$

Q.11 Which of the following statement(s) is/are correct? (A) $\log_{10} x^2 = 2\log_{10} x$

- (B) The value of $\frac{3^{\log_5 4}}{4^{\log_5 3}}$ is equal to 1.
- (C) $\log_2 5 + \log_5 2 > 2$
- (D) Number of positive integers that logarithm of whose reciprocals to the base 10 has the characteristic (-2) is 90.

PART-B [MATRIX TYPE]

Q.1 has four statements (A, B, C, D) given in Column-I and five statements (P, Q, R, S, T) given in Column-II. Any given statement in Column-I can have correct matching with one or more statement(s) given in Column-II. [3+3+3+3=12]

Q.1 **Column-I** contains logarithmic equations and entries in **column-II** describes qualitatively the nature of their solution. (Take base of the logarithm as 10 where not mentioned.)

ulen s	Column-I	inentioned.	Column-II		
(A)	The equation $x^{\log_3 x} = 9$ has	(P)	Only integral solution(s)		
(B)	The equation $\frac{\log(35-x^3)}{\log(5-x)} = 3$, has	(Q)	only prime solutions		
(C)	The equation $9^{\log_{1/3}(x+1)} = 5^{\log_{1/5}(2x^2+1)}$, has	(R)	only even integral solution		
(D)	The equation $4^{(x^2+2)} - (9)2^{(x^2+2)} + 8 = 0$, has	(S) (T)	only irrational solutions only rational solution(s)		
PART-C [INTEGER TYPE]					

Q.1 to Q.3 are "Integer Type" questions. (The answer to each of the questions are upto <u>4 digits</u>) [3×5=15]

Q.1 Let $x = 5^{(\log_5 2 + \log_5 3)}$. If 'd' denotes the number of digits before decimal in x^{30} and 'c' denotes the number of naughts after decimal before a significant digit starts in x^{-20} , then find the value of (d-c). [Take $\log_{10} 2 = 0.3010$ and $\log_{10} 3 = 0.4771$.]

Q.2 Let
$$p = \frac{(\log_2 2000)(\log_5 2000) - 4(\log_5 2000)}{\log_2 2000}$$
. Find $p \in N$.

Q.3 If $x = \alpha$ satisfies the equation $\log_6(2^{x+3}) - \log_6(3^x - 2) = x$, then find the value of 3^{α} .

Class	:XI	<i>r-30</i> <i>M-I)</i> Time: 45 Min.		M.M:39		2020 NO8	
			BJECTIVE TYPE	Ξ]	[4 ×	3 = 12]	
Q.1	The value of	of $\log_2((\log_{81} 3)^{\log_3 81})$ is equal to					
	(A) - 8	$(B) - 4 \log_2 3$	(C) 8	$(D) - 4 \log_3$	32		
Q.2	The real x and y satisfy simultaneously $\log_8 x + \log_4 y^2 = 5$ and $\log_8 y + \log_4 x^2 = 7$ then the value of x						
	is equal to (A) 2 ⁹	(B) 2^{12}	(C) 2 ¹⁸	(D) 2 ²⁴			
Q.3	Number of digits in $4^{16} \cdot 5^{25}$ is (use $\log_{10} 2 = 0.3010$)						
-	(A) 27 (B) 28 (C) 29			(D) 30			
Q.4	Number of (A) 1	is (D) more th	an 3				
			JECTIVE TYPE	-1	[1]	× 4 = 4]	
Q.5	The expres	-		-	[-]	
X	ine enpier	ssion, $\log_p \log_p \underbrace{\sqrt[p]{p}{\sqrt[p]{1}{1}{\sqrt[p]{1}{\sqrt[p]{1}{\sqrt[p]{1}{\sqrt[p]{1}{1}{\sqrt[p]{1}{1}{\sqrt[p]{1}{\sqrt[p]{1}{\sqrt[p]{1}{1}{\sqrt[p]{1}{1}{\sqrt[p]{1}{1}{\sqrt[p]{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{$	to p = 2, p = 1, when s	impinioa is			
	(A) independent of p, but dependent on n (B) independent of n, but dependent on p						
	· · · -	dent on both p & n	(D) negative.	i, but depende	nt on p		
		[MATCH TH	IE COLUMN]		[3+3+3	6+3=12]	
Q.6	Column-I				Colu	mn-II	
	(A) If	$4^{x} - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-1}$ then	(2x) equals		(P)	1	
	(B) The number of solutions of $\log_7 \log_5 \left(\sqrt{x+5} + \sqrt{x} \right) = 0$ is				(Q)	2	
	(C) The number of values of x such that the middle term of $x = 1$				(R)	3	
	$\log_3 2$, $\log_3 (2^x - 5)$, $\log_3 \left(2^x - \frac{7}{2} \right)$ is the average of the other two is			two is	(S)	4	
	(D) If α , β are the roots of the equation						
	x ²	$-\left(3+2^{\sqrt{\log_2 3}}-3^{\sqrt{\log_3 2}}\right)x-2\left(3\right)$	$\log_3 2 - 2^{\log_2 3} = 0$ then 2	$2(\alpha + \beta) - \alpha\beta$	equals		
		[SUBJ	ECTIVE]				

Q.7 The circumference of a circle circumscribing an equilateral triangle is 24π units. Find
(a) the area of the circle inscribed in the equilateral triangle.
(b) area of the equilateral triangle inscribed in the inner circle. [3+3]

Q.8 If
$$0 < x < \frac{\pi}{4}$$
 and $\cos x + \sin x = \frac{5}{4}$, find the numerical values of $\cos x - \sin x$. [5]

S	uper-: _(NM-I)	30		MATHEN	dhir jainam ATICS Broblomo
				Daily Practice Target IIT M.M:34	
Class	:	me: 40 Min.			
Q.1	Given $\log_{10} 2 = a$	[STRAIGHT C and $\log_{10}3 = b$. If 3^{x+2}	DBJECTIVE \mathbf{T} = 45. The value of x i		$[8 \times 3 = 24]$
	(A) $\frac{a-1}{b}$	(B) $\frac{1-a}{b}$	(C) $\frac{1+a}{b}$	(D) $\frac{b}{1-a}$	
Q.2	lengths 8, 11 and π three circles as she (A) 31 + 4 π (C) 31 + π	C C	elt that fits tightly arou (B) $31 + 6\pi$ (D) $31 + 2\pi$	nd those	руу 12 В 12
Q.3	If $\log_9 x + \log_4 y =$	$=\frac{7}{2}$ and $\log_9 x - \log_9 x$	$g_8 y = -\frac{3}{2}$, then x + y	equals	
	(A) 35	(B) 41	(C) 67	(D) 73	
Q.4	$a^{2\log_2 x} =$ (A) S contains exa (B) S contains mo (C) S contains exa	ed real number. If S is the $5 + 4x^{\log_2 a}$, then actly one real number actly two real numbers nitely many real numbers	nany, real numbers	that are solutions to	the equation
Q.5	(A) a null set	of the equation $\log_{10}(3x)$ g of exactly two elements	(B) a singleton	(x + 4) = 1 is ng of more than two	elements
Q.6 Suppose n be an integer greater than 1, let $a_n = \frac{1}{\log_n 2002}$. Suppose b				Suppose $b = a_2 + a_3$	$a_3 + a_4 + a_5$ and
	$c = a_{10} + a_{11} + a_{12} + a_{13} + a_{14}$. Then $(b - c)$ equals				
	(A) $\frac{1}{1001}$	(B) $\frac{1}{1002}$	(C) – 1	(D) – 2	
Q.7	Q.7 The value of $\log_2\left(\sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}}\right)$ is equal to				
	(A) 1	(B) 0	(C) 1/2	(D) $\log_2 3$	
Q.8	Let $\alpha = \sqrt{19-8}$	$\overline{3\sqrt{3}} + \sqrt{7 + 4\sqrt{3}}$ and	$\beta = \sqrt{83 - 18\sqrt{2}} - \sqrt{6}$	$\overline{6-4\sqrt{2}}$, then \log_2	$\left(\frac{\alpha}{\beta}\right)$ lies in the
	interval				
	(A) (– 2, – 1)	$(\mathbf{B})\left(\frac{-1}{2},0\right)$	(C) (0, 1)	(D) $\left(-1, \frac{-1}{2}\right)$	
Q.9		[SUB is to be laid out on a circ he radius of the curve (in			⁰ in a distance of [4]

Q.10 If $15 \sin^4 \alpha + 10\cos^4 \alpha = 6$, then find the value of $8 \csc^6 \alpha + 27 \sec^6 \alpha$. [6]