[STRAIGHT OBJECTIVE TYPE]
Q. 1 Let $\mathrm{x}=2^{\log 3}$ and $\mathrm{y}=3^{\log 2}$ where base of the logarithm is 10 , then which one of the following holds good?
(A) $2 x<y$
(B) $2 y<x$
(C) $3 x=2 y$
(D) $y=x$
Q. 2 Which one of the following is the smallest?
(A) $\log _{10} \pi$
(B) $\sqrt{\log _{10} \pi^{2}}$
(C) $\left(\frac{1}{\log _{10} \pi}\right)^{3}$
(D) $\left(\frac{1}{\log _{10} \sqrt{\pi}}\right)$
Q. 3 If $x=\log _{k} b=\log _{b} c=\frac{1}{2} \log _{c} d$ then $\log _{k}$ d equals
(A) $2 x^{3}$
(B) $\frac{x^{3}}{2}$
(C) $2 x^{8}$
(D) $6 x$
Q. 4 The number $\mathrm{N}=6 \log _{10} 2+\log _{10} 31$, lies between two successive integers whose sum is equal to
(A) 5
(B) 7
(C) 9
(D) 10

[MULTIPLE OBJECTIVE TYPE]

Q. 5 Select the correct statement.
(A) $\log _{3} 19 \cdot \log _{1 / 7} 3 \cdot \log _{4}\left(\frac{1}{7}\right)<2$
(B) The equation $\log _{1 / 3}\left(x^{2}+8\right)=-2$ has two real solutions.
(C) Let $\mathrm{N}=\log _{2} 15 \cdot \log _{1 / 6} 2 \cdot \log _{3}\left(\frac{1}{6}\right)$. The greatest integer which is less than or equal to N is 3 .
(D) The equation $\log _{4} x+\log _{4}(x+2)=\log _{4}(3 x)$ has no prime solution.
Q. 6 The equation $\frac{\log _{8}\left(8 / x^{2}\right)}{\left(\log _{8} x\right)^{2}}=3$ has
(A) no integral solution
(B) one natural solution
(C) two real solutions
(D) one irrational solution

[MATCH THE COLUMN]

Q. 7

Column-I
(A) If x_{1} and x_{2} satisfy the equation $x^{\log _{10} x}=100 x$
(P) irrational then the value of $x_{1} x_{2}$ equals
(B) Sum of the squares of the roots of the equation
(Q) rational $\log _{2}\left(9-2^{x}\right)=3-x$ is
(C) If $\log _{1 / 8}\left(\log _{1 / 4}\left(\log _{1 / 2} x\right)\right)=\frac{1}{3}$ then x is
(R) prime
(D) If $\log _{b} a=3, \log _{b} c=-4$. If the value of x satisfying the
(S) composite equation $a^{3 x}=c^{x-1}$ is expressed in the form p / q, where p and q are relatively prime then $\mathrm{p}+\mathrm{q}$ is
[SUBJECTIVE]
Q. 8 A polynomial in x of degree three vanishes when $\mathrm{x}=1$ and $\mathrm{x}=-2$, and has the values 4 and 28 when $x=-1$ and $x=2$ respectively. Find the polynomial.

