S	Sup	er-30 _{NM-I)}		ИАТНЕЛ	e Problems
Class		Time: 45 Min.		M.M:36	DPP. NO6
		[STRAIGHT	OBJECTIVE TYP	νE]	$[4 \times 3 = 12]$
Q.1	Let $x = 2^{\log 3}$ and $y = 3^{\log 2}$ where base of the logarithm is 10, then which one of the following holds good?				
	(A) 2x	$\langle y $ (B) $2y \langle x$	(C) $3x = 2y$	(D) y = x	
Q.2	Which one of the following is the smallest?				
	(A) $\log_{10} \pi$ (B) $\sqrt{\log_{10} \pi^2}$		$(C) \left(\frac{1}{\log_{10} \pi}\right)^3$	$(D)\left(\frac{1}{\log_{10}\sqrt{\pi}}\right)$	
Q.3	If $x = \log_k b = \log_b c = \frac{1}{2} \log_c d$ then $\log_k d$ equals				
	(A) 2x ²	³ (B) $\frac{x^3}{2}$	(C) $2x^8$	(D) 6x	
Q.4	The nu (A) 5	1 mber N = $6 \log_{10} 2 + \log_{10} 31$, lies (B) 7	s between two successive i (C) 9	ntegers whose s (D) 10	um is equal to
~ ~	~ 1	—	OBJECTIVE TYP	E]	$[2 \times 4 = 8]$
Q.5	Select the correct statement.				
	$(A) \log_3 19 \cdot \log_{1/7} 3 \cdot \log_4 \left(\frac{1}{7}\right) < 2$				
	(B) The equation $\log_{1/3}(x^2+8) = -2$ has two real solutions.				
	(C) Let N = $\log_2 15 \cdot \log_{1/6} 2 \cdot \log_3 \left(\frac{1}{6}\right)$. The greatest integer which is less than or equal to N is 3.				
	(D) The equation $\log_4 x + \log_4 (x + 2) = \log_4 (3x)$ has no prime solution.				
Q.6	The eq	puttion $\frac{\log_8(8/x^2)}{(\log_8 x)^2} = 3$ has			
			(B) one natural solut (D) one irrational so		
Q.7		[MATCH Column-I	THE COLUMN]	Col	[3+3+3+3=12] umn-II
	(A)	If x_1 and x_2 satisfy the equation x then the value of x_1x_2 equals	$x^{\log_{10} x} = 100x$	(P)	irrational
	(B) Sum of the squares of the roots of the equation $\log_2(9-2^x) = 3 - x$ is			(Q)	rational
	(C)	If $\log_{1/8} \left(\log_{1/4} \left(\log_{1/2} x \right) \right) = \frac{1}{3}$ the	nen x is	(R)	prime
	(D)	If $\log_b a = 3$, $\log_b c = -4$. If the value equation $a^{3x} = c^{x-1}$ is express where p and q are relatively prime	ed in the form p/q ,	(S)	composite
		-	BJECTIVE]		
Q.8	A polynomial in x of degree three vanishes when $x = 1$ and $x = -2$, and has the values 4 and 2				

Q.8 A polynomial in x of degree three vanishes when x = 1 and x = -2, and has the values 4 and 28 when x = -1 and x = 2 respectively. Find the polynomial. [4]