[STRAIGHT OBJECTIVE TYPE]
Q. $1 \quad$ If $x=\log _{b}(7)^{7}$ satisfies the equation $7^{x+7}=8^{x}$, then the value of b is equal to
(A) $\frac{15}{7}$
(B) $\frac{15}{8}$
(C) $\frac{7}{8}$
(D) $\frac{8}{7}$
Q. 2 Let $\mathrm{B}, \mathrm{C}, \mathrm{P}$ and L be positive real numbers such that
$\log (\mathrm{B} \cdot \mathrm{L})+\log (\mathrm{B} \cdot \mathrm{P})=2 ; \quad \log (\mathrm{P} \cdot \mathrm{L})+\log (\mathrm{P} \cdot \mathrm{C})=3 ; \quad \log (\mathrm{C} \cdot \mathrm{B})+\log (\mathrm{C} \cdot \mathrm{L})=4$
The value of the product (BCPL) equals (base of the \log is 10)
(A) 10^{2}
(B) 10^{3}
(C) 10^{4}
(D) 10^{9}
Q. 3 The value of the expression $5{\frac{\log _{3}\left(\log _{2} 81\right)}{\log _{3} 5}}^{\text {(A) }}$
(A) 5 and 6
(B) 7 and 8
(C) 6 and 7
(D) 8 and 9
Q. 4 If $\log _{\mathrm{a}}(\mathrm{ab})=\mathrm{x}$, then $\log _{\mathrm{b}}(\mathrm{ab})$ is equal to
(A) $\frac{1}{\mathrm{x}}$
(B) $\frac{x}{1+x}$
(C) $\frac{x}{x-1}$
(D) $\frac{x}{1-x}$
Q. 5 If x_{1} and x_{2} are the solution of the equation $7^{\frac{2 x^{2}-5 x-9}{2}}=(\sqrt{2})^{3 \log _{2} 7}$, then $\left(x_{1} x_{2}\right)$ has the value equal to
(A) $\frac{5}{2}$
(B) 6
(C) -6
(D) 4
[MATCH THE COLUMN]
Q. 6

Column-I

(A) If $\mathrm{a}=3(\sqrt{8+2 \sqrt{7}}-\sqrt{8-2 \sqrt{7}}), \mathrm{b}=\sqrt{(42)(30)+36}$ then the value of $\log _{\mathrm{a}} \mathrm{b}$ is equal to
(B) Number of real solutions of the equation $|\mathrm{x}-1|+|\mathrm{x}-3|=\frac{3}{2}$ is
(C) If $\mathrm{a}=\sqrt{6+2 \sqrt{5}}-\sqrt{6-2 \sqrt{5}}, \mathrm{~b}=\sqrt[3]{17 \sqrt{5}+38}-\sqrt[3]{17 \sqrt{5}-38}$
then the value of $\log _{\mathrm{a}} \mathrm{b}$ is equal to
(D) If $\sin x+\sin ^{2} x=1$ then the value of $\cos ^{2} x+\cos ^{4} x$ equals
$[3+3+3+3=12]$

Column-II

(P) 0
(Q) 1
(R) 2
(S) 3
[SUBJECTIVE / INTEGER TYPE]
Q. 7 If $\sec \theta+\tan \theta=2$, then find the value of $\sec \theta$?
Q. $8 \quad$ Let $\mathrm{a}=\sqrt{57+40 \sqrt{2}}-\sqrt{57-40 \sqrt{2}}$ and $\mathrm{b}=\sqrt{25^{\frac{1}{\log _{8} 5}}+49^{\frac{1}{\log _{6} 7}}}$ and c is the value of $\mathrm{x}^{3}+3 \mathrm{x}-14$ where $\mathrm{x}=\sqrt[3]{7+5 \sqrt{2}}-\frac{1}{\sqrt[3]{7+5 \sqrt{2}}}$. Find the value of $(a+b+c)$.
Q. 1 Let $\mathrm{n}=\sqrt{6+\sqrt{11}}+\sqrt{6-\sqrt{11}}-\sqrt{22}$ then
(A) $\mathrm{n} \geq 1$
(B) $0<\mathrm{n}<1$
(C) $\mathrm{n}=0$
(D) $-1<$ n <0
Q. 2 If $\log _{\mathrm{a}} \mathrm{b}=2 ; \log _{\mathrm{b}} \mathrm{c}=2$ and $\log _{3} \mathrm{c}=3+\log _{3} \mathrm{a}$ then $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ equals
(A) 90
(B) 93
(C) 102
(D) 243
Q. 3 If $x+y=1$ and $x^{2}+y^{2}=2$ then the value of $\left(x^{5}+y^{5}\right)$ equals
(A) 7
(B) 6
(C) $\frac{23}{4}$
(D) $\frac{19}{4}$
Q. 4 Number of real numbers x satisfying the equation

$$
\log _{3} x-2=\sqrt{\log _{3} x^{3}-8} \text { is }
$$

(A) 0
(B) 1
(C) 2
(D) 3
[MATCH THE COLUMN]
Q. 5

Column-I

(A) Anti logarithm of $(0 . \overline{6})$ to the base 27 has the value equal to

Column-II

(P) 5
(B) Characteristic of the logarithm of 2008 to the base 2 is
(C) The value of b satisfying the equation,
(Q) 7

$$
\log _{\mathrm{e}} 2 \cdot \log _{\mathrm{b}} 625=\log _{10} 16 \cdot \log _{\mathrm{e}} 10 \text { is }
$$

(D) Number of naughts after decimal before a significant figure
(R) 9 comes in the number $\left(\frac{5}{6}\right)^{100}$, is

[SUBJECTIVE]

Q. 6 Solve the equation, $\sqrt{\log (-\mathrm{x})}=\log \sqrt{\mathrm{x}^{2}}$ (base is 10)
Q. 7 The length of a common internal tangent to two circles is 7 and a common external tangent is 11 . Compute the product of the radii of the two circles .
Q. 8 If $2(\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}})=\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}$ where a and b are natural number find $(\mathrm{a}+\mathrm{b})$.

