Super-30
 (NM-I)

[MATRIX TYPE]
Q. 1 Solve the equation.
(A) $\left(\frac{3}{7}\right)^{2 x-7}=\left(\frac{7}{3}\right)^{7 x-2}$
(P) $x=-1$
(B) $9^{x}+6^{x}=2 \cdot 4^{x}$
(Q) $\quad x=0$
(C) $5^{x+1}-5^{x-1}=24$
(R) $x=1$
(D) $6^{x}+6^{x+1}=2^{x}+2^{x+1}+2^{x+2}$
(S) $x=2$
$[2+2+2+2+2+2=12]$
Q. 2

Column-I

Column-II
(A) If $\mathrm{a}=3(\sqrt{8+2 \sqrt{7}}-\sqrt{8-2 \sqrt{7}}), \mathrm{b}=\sqrt{(42)(30)+36}$,
(P) - 1 then the value of $\log _{\mathrm{a}} \mathrm{b}$ is equal to
(B) If $a=\sqrt{4+2 \sqrt{3}}-\sqrt{4-2 \sqrt{3}}, b=\sqrt{11+6 \sqrt{2}}-\sqrt{11-6 \sqrt{2}}$,
then the value of $\log _{\mathrm{a}} \mathrm{b}$ is equal to
(C) $a=\sqrt{3+2 \sqrt{2}}, b=\sqrt{3-2 \sqrt{2}}$,
(R) 2
then the value of $\log _{\mathrm{a}} \mathrm{b}$ is equal to
(D) $\quad \mathrm{a}=\sqrt{7+\sqrt{7^{2}-1}}, \mathrm{~b}=\sqrt{7-\sqrt{7^{2}-1}}$,
then the value of $\log _{\mathrm{a}} \mathrm{b}$ is equal to
(E) The number of zeroes at the end of the product of first 20 prime numbers, is
(T) None
(F) The number of solutions of $2^{2 x}-3^{2 y}=55$, in which x and y are integers, is
[INTEGER TYPE / SUBJECTIVE]
Q. 3 The sides of a triangle ABC are as shown in the given figure. Let D be any internal point of this triangle and let e, f, and g denote the distance between the point D and the sides of the triangle. Find the sum $(5 e+12 f+13 g)$.
[4]

Q. 4 An equilateral triangle and a regular hexagon have the same perimeter, find the ratio of their areas. [4]
Q. 5 Establish tricotomy in each of this following pairs of numbers
(i) $3^{\log _{27} 3}$ and $2^{\log _{4} 2}$
(ii) $\log _{4} 5$ and $\log _{1 / 16}(1 / 25)$
(iii) 4 and $\log _{3} 10+\log _{10} 81$
(iv) $\log _{1 / 5}(1 / 7)$ and $\log _{1 / 7}(1 / 5)$
Q. 6 Compute the value of $81^{\frac{1}{\log _{5} 3}}+27^{\log _{9} 36}+3^{\frac{4}{\log _{7} 9}}$

