Super-30 (NM-I)			Ĺ	by:-sudhir jainam MATHEMIATICS Daily Practice Problems Target IIT JEE 2020		
Class	:XI	Time	: 90 Min. M.M:90		DPP. NO 2	
		\mathbf{PA}	T ON LOG RT-A ECT CHOIC			
-	-		t of which ONLY ONI e deduct for each wrong		$[9\times 3=27]$	
Q.1	A circle has a radiu	s of $\log_{10}(a^2)$ and a circ	cumference of $\log_{10}(b^4)$. The value of log _a b	is equal to	
	(A) $\frac{1}{4\pi}$	(B) $\frac{1}{\pi}$	(C) π	(D) 2π		
Q.2	Greatest integer les (A) 1	ss than or equal to the r (B) 2	number $\log_2 15 \cdot \log_{1/6}$ (C) 3	2.log ₃ 1/6 is (D) 4		
Q.3	If $5x^{\log_2 3} + 3^{\log_2 x} =$ (A) -1	162 then logarithm of (B) 1	Ex to the base 0.125 ha (C) 2	s the value equal to (D) 3/2		
Q.4	If $x = \log_9 14$ and (A) $1/3$	$y = \log_{27} 196$ then $y = 100$ (B) $3/4$	kx where <i>k</i> equals (C) 3	(D) 4/3		
Q.5		$\frac{-3^{\log_{27}(a^2+1)^3}-2a}{\log_{49}a-a-1} \text{sim}$				
	(A) $a^2 - a - 1$	(B) $a^2 + a - 1$	(C) $a^2 - a + 1$	(D) $a^2 + a +$	1	
Q.6	If $(21.4)^a = (0.002)^{a}$	$(14)^{b} = 100$, then the va	lue of $\frac{1}{a} - \frac{1}{b}$ is			
	(A) rational which i (C) irrational	s not integral	(B) prime (D) composite			
Q.7	The value of x sati	sfying the equation 2^{lo}	$\log_3 x + 8 = 3 \cdot x^{\log_9 4}$, is			
	(A) irrational numb (C) relatively prime		mber. ber which is not an ir	nteger.		
Q.8	Q.8 The sum of all y such that $1 = 6\log_y 3 - \log_3 y$, is					
	(A) $\frac{244}{27}$	(B) $\frac{244}{9}$	(C) – 1	(D) 1		
Q.9	Find the sum of all (A) 5	values of $x > 0$ for wh (B) 9	ich $(\log_{27} x^3)^2 = \log_{27} x^4$ (C) 10	5. (D) 1		

[MULTIPLE CORRECT CHOICE TYPE]

Q.10 to Q.13 has four choices (A), (B), (C), (D) out of which **ONE OR MORE** may be correct. $[4 \times 4 = 16]$ There is **NO NEGATIVE** marking.

Q.10	The equation $\log_{x^2} 16 + \log_{2x} 64 = 3$ has		
	(A) one irrational solution	(B) no prime solution	
	(C) two real solutions	(D) one integral solution	

Q.11 Which of the following when simplified reduces to unity.

(A)
$$\log_{10} \sqrt{5^{\log_5 8^2} + 7^{\log_7 6^2}}$$
 (B) $\log_{1/2} (\log_3 \cos 30^\circ - \log_3 \sin 30^\circ)$
(C) $\frac{(5\sqrt{3} + \sqrt{50})(5 + \sqrt{24})}{\sqrt{75} - 5\sqrt{2}}$ (D) $(\log_{697} 17 + \log_{697} 41)$

- Q.12 Which of the following vanishes?
 - (A) log tan 1°. log tan 2°. log tan 3°..... log tan 87°
 (B) log₂(log 100)
 (C) log sin 1°. log sin 2°. log sin 3°..... log sin 90°
 - (D) $\log \tan 1^\circ + \log \tan 2^\circ + \log \tan 3^\circ + \dots + \log \tan 89^\circ$.
- Q.13 Which of the following real numbers is(are) non-positive?

(A)
$$\log_{\frac{1}{2}} \left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}} \right)$$
 (B) $\log_{2} \left(\log_{5} 3 \cdot \log_{7} 5 \cdot \log_{3} 7 \right)$
(C) $\log_{7} \left(\frac{3}{2} \right)^{\frac{-2}{3}}$ (D) $\log_{12} \left(\sqrt{65} - 7 \right)$
PART-B

Q.1 and **Q.2** has **three/four** statements (A, B, C or A, B, C, D) given in **Column-I** and **four/five** statements (P, Q, R, S or P, Q, R, S, T) given in **Column-II**. Any given statement in **Column-I** can have correct matching with one or more statement(s) given in **Column-II**.

Q.1		COLUMN-I	[(COLU	3 + 3 + 3 = 9] MN-II
	(A)	If $x = \frac{\sqrt{10} + \sqrt{2}}{2}$ and $y = \frac{\sqrt{10} - \sqrt{2}}{2}$,	(P)	4
		then the value of $\log_2(x^2 + xy + y^2)$, is equal to		
	(B)	$\sqrt[3]{5^{\frac{1}{\log_7 5}} + \frac{1}{\sqrt{-\log_{10} (0.1)}}}$ simplifies to	(Q)	3
	(C)	The expression $\frac{\left(\log_{\frac{a}{b}}p\right)^{2} + \left(\log_{\frac{b}{c}}p\right)^{2} + \left(\log_{\frac{c}{a}}p\right)^{2}}{\left(\log_{\frac{a}{b}}p + \log_{\frac{b}{c}}p + \log_{\frac{c}{a}}p\right)^{2}},$	(R)	2
		wherever defined, simplifies to	(S)	1

PAGE#2

Q.2		Column-I	[3+3+3+3 = 12 + 1 Bonus mark] Column-II	
	(A)	$(0.01)^{\log_{10}\left(\frac{1}{5}\right)-\frac{1}{2}}$ is	(P)	positive
	(B)	$\log_3(\sqrt{73}-8)$ is	(Q)	negative
	(C)	log (log 10) is	(R)	irrational
	(D)	$\left(\frac{1}{3}\right)^{\log_9 2 - 3}$ is	(S)	integer

PART-C [INTEGER TYPE]

Q.1 to Q.5 are "Integer Type" questions. (The answer to each of the questions are upto 4 digits)[5 × 5 = 25]

Q.1 If $\log_x y + \log_y x = \frac{29}{10}$ and x y = 128, find (x + y).

Q.2 If p is the smallest value of x satisfying the equation $2^{x} + \frac{15}{2^{x}} = 8$ then find the value of 4^{p} .

- Q.3 Let L denotes the value of a satisfying the equation $\log_{\sqrt{8}}(a) = \frac{10}{3}$ and M denotes the value of b satisfying the equation $4^{\log_9 3} + 9^{\log_2 4} = 10^{\log_b 83}$. Find (L+M)
- Q.4 If α , β are the roots of the equation $x^2 \left(3 + 2^{\sqrt{\log_2 3}} 3^{\sqrt{\log_3 2}}\right)x 2\left(3^{\log_3 2} 2^{\log_2 3}\right) = 0$ then find $2(\alpha + \beta) - \alpha\beta$.
- Q.5 Given $\log_2(\log_8 x) = \log_8(\log_2 x)$ then find the value of $(\log_2 x)^2$.