by:- sualhir jainam
WATHEWHTOS
Daily Practice Problems
Target IIT JEE 2020

PRACTICE TEST ON LOGARITHM

[SINGLE CORRECT CHOICE TYPE]
Q. 1 to Q. 9 has four choices (A), (B), (C), (D) out of which ONLY ONE is correct.

There is NEGATIVE marking. One mark will be deduct for each wrong answer.
Q. $1 \quad$ A circle has a radius of $\log _{10}\left(\mathrm{a}^{2}\right)$ and a circumference of $\log _{10}\left(\mathrm{~b}^{4}\right)$. The value of $\log _{\mathrm{a}} \mathrm{b}$ is equal to
(A) $\frac{1}{4 \pi}$
(B) $\frac{1}{\pi}$
(C) π
(D) 2π
Q. 2 Greatest integer less than or equal to the number $\log _{2} 15 \cdot \log _{1 / 6} 2 \cdot \log _{3} 1 / 6$ is
(A) 1
(B) 2
(C) 3
(D) 4
Q. 3 If $5 x^{\log _{2} 3}+3^{\log _{2} x}=162$ then logarithm of x to the base 0.125 has the value equal to
(A) -1
(B) 1
(C) 2
(D) $3 / 2$
Q. 4 If $\mathrm{x}=\log _{9} 14$ and $\mathrm{y}=\log _{27} 196$ then $\mathrm{y}=\mathrm{kx}$ where k equals
(A) $1 / 3$
(B) $3 / 4$
(C) 3
(D) $4 / 3$
Q. 5 The ratio $\frac{2^{\log _{2^{1 / 4}} a}-3^{\log _{27}\left(a^{2}+1\right)^{3}}-2 a}{7^{4 \log _{49} a}-a-1}$ simplifies to
(A) $a^{2}-a-1$
(B) $a^{2}+a-1$
(C) $\mathrm{a}^{2}-\mathrm{a}+1$
(D) $a^{2}+a+1$
Q. 6 If $(21.4)^{\mathrm{a}}=(0.00214)^{\mathrm{b}}=100$, then the value of $\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}$ is
(A) rational which is not integral
(B) prime
(C) irrational
(D) composite
Q. 7 The value of x satisfying the equation $2^{\log _{3} x}+8=3 \cdot x^{\log _{9} 4}$, is
(A) irrational number.
(B) odd prime number.
(C) relatively prime with 4 .
(D) rational number which is not an integer.
Q. 8 The sum of all y such that $1=6 \log _{y} 3-\log _{3} y$, is
(A) $\frac{244}{27}$
(B) $\frac{244}{9}$
(C) -1
(D) 1
Q. 9 Find the sum of all values of $\mathrm{x}>0$ for which $\left(\log _{27} \mathrm{x}^{3}\right)^{2}=\log _{27} \mathrm{x}^{6}$.
(A) 5
(B) 9
(C) 10
(D) 1

[MULTIPLE CORRECT CHOICE TYPE]

Q. 10 to Q .13 has four choices (A), (B), (C), (D) out of which ONE OR MORE may be correct.[4 $\times 4=16]$ There is NO NEGATIVE marking.
Q. 10 The equation $\log _{\mathrm{x}^{2}} 16+\log _{2 \mathrm{x}} 64=3$ has
(A) one irrational solution
(B) no prime solution
(C) two real solutions
(D) one integral solution
Q. 11 Which of the following when simplified reduces to unity.
(A) $\log _{10} \sqrt{5^{\log _{5} 8^{2}}+7^{\log _{7} 6^{2}}}$
(B) $\log _{1 / 2}\left(\log _{3} \cos 30^{\circ}-\log _{3} \sin 30^{\circ}\right)$
(C) $\frac{(5 \sqrt{3}+\sqrt{50})(5+\sqrt{24})}{\sqrt{75}-5 \sqrt{2}}$
(D) $\left(\log _{697} 17+\log _{697} 41\right)$
Q. 12 Which of the following vanishes?
(A) $\log \tan 1^{\circ} . \log \tan 2^{\circ} . \log \tan 3^{\circ}$ $\log \tan 87^{\circ}$
(B) $\log _{2}(\log 100)$
(C) $\log \sin 1^{\circ} . \log \sin 2^{\circ} . \log \sin 3^{\circ} \ldots \ldots . . \log \sin 90^{\circ}$
(D) $\log \tan 1^{\circ}+\log \tan 2^{\circ}+\log \tan 3^{\circ}+\ldots \ldots . .+\log \tan 89^{\circ}$.
Q. 13 Which of the following real numbers is(are) non-positive?
(A) $\log _{\frac{1}{2}}\left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right)$
(B) $\log _{2}\left(\log _{5} 3 \cdot \log _{7} 5 \cdot \log _{3} 7\right)$
(C) $\log _{7}\left(\frac{3}{2}\right)^{\frac{-2}{3}}$
(D) $\log _{12}(\sqrt{65}-7)$

PART-13

[MATRIX TYPE]
Q. 1 and $\mathbf{Q . ~} 2$ has three/four statements (A, B, C or A, B, C, D) given in Column-I and four/five statements (P, Q, R, S or P, Q, R, S, T) given in Column-II. Any given statement in Column-I can have correct matching with one or more statement(s) given in Column-II.

Q. 1

COLUMN-I

(A) If $\mathrm{x}=\frac{\sqrt{10}+\sqrt{2}}{2}$ and $\mathrm{y}=\frac{\sqrt{10}-\sqrt{2}}{2}$, then the value of $\log _{2}\left(x^{2}+x y+y^{2}\right)$, is equal to
(B) $\sqrt[3]{5^{\frac{1}{\log _{7} 5}}+\frac{1}{\sqrt{-\log _{10}(0.1)}}}$ simplifies to
(C)

(R) 2
wherever defined, simplifies to
(S) 1

Column-I

Column-II

(A) $\quad(0.01)^{\log _{10}\left(\frac{1}{5}\right)-\frac{1}{2}}$ is
(P) positive
(B) $\quad \log _{3}(\sqrt{73}-8)$ is
(Q) negative
(C) $\quad \log (\log 10)$ is
(R) irrational
(D) $\left(\frac{1}{3}\right)^{\log _{9} 2-3}$ is
(S) integer
Q. 1 to Q. 5 are "Integer Type" questions. (The answer to each of the questions are upto 4 digits)[5 $\times 5=25]$
Q. $1 \quad$ If $\log _{\mathrm{x}} \mathrm{y}+\log _{\mathrm{y}} \mathrm{x}=\frac{29}{10}$ and $\mathrm{x} \mathrm{y}=128$, find $(\mathrm{x}+\mathrm{y})$.
Q. 2 If p is the smallest value of x satisfying the equation $2^{\mathrm{x}}+\frac{15}{2^{\mathrm{x}}}=8$ then find the value of 4^{p}.
Q. 3 Let L denotes the value of a satisfying the equation $\log _{\sqrt{8}}(a)=\frac{10}{3}$
and M denotes the value of b satisfying the equation $4^{\log _{9} 3}+9^{\log _{2} 4}=10^{\log _{b} 83}$. Find $(L+M)$
Q. 4 If α, β are the roots of the equation $x^{2}-\left(3+2^{\sqrt{\log _{2} 3}}-3^{\sqrt{\log _{3} 2}}\right) x-2\left(3^{\log _{3} 2}-2^{\log _{2} 3}\right)=0$ then find $2(\alpha+\beta)-\alpha \beta$.
Q. $5 \quad$ Given $\log _{2}\left(\log _{8} \mathrm{x}\right)=\log _{8}\left(\log _{2} \mathrm{x}\right)$ then find the value of $\left(\log _{2} \mathrm{x}\right)^{2}$.

