

Super-30 (NM-I)

Topics : Fundamentals of Mathematics, Logarithm	Total Marks: 30	Max. Time: 33 min.	DPP.	NO14	
Type of Questions			M.M., Min.		
Single choice Objective (no negative marking) Q.1	(3 m	arks, 3 min.)	[3,	3]	
Assertion and Reason (no negative marking) Q.2	(3 marks, 3 min.)		[3,	3]	
Subjective Questions (no negative marking) Q.3,5,6	(4 marks, 5 min.)		[12,	15]	
Fill in the Blanks (no negative marking) Q.4	(4 marks, 4 min.)		[4,	4]	
Match the Following (no negative marking) Q.7	(8 m	arks, 8 min.)	[8,	8]	

- 1. The complete solution set of the inequation $\sqrt{x+18} < 2-x$, is
 - (A) [-18, -2)
- (B) [-18, -5)
- (C)(-18, 5)
- (D) none of these
- 2. Statement-1: $\log_{10} x < \log_{\pi} x < \log_{e} x < \log_{2} x$ (x > 0 and x ≠ 1)

Statement-2: If 0 < x < 1, then $\log_x a > \log_x b \Rightarrow a < b$

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.
- 3. If $\log_6 \log_2 \left[\sqrt{4x + 2} + 2\sqrt{x} \right] = 0$, then x =____.
- 4. Given, $\log_a x = \alpha$; $\log_b x = \beta$; $\log_c x = \gamma$ & $\log_d x = \delta$ (x \neq 1), then $\log_{abcd} x$ has the value equal to _____
- 5. Solve the equation for x : log 4 + $\left(1 + \frac{1}{2x}\right)$ log 3 = log $\left(\sqrt[x]{3} + 27\right)$
- 6. Find all integral solutions of the equation $4 \log_{x/2} (\sqrt{x}) + 2 \log_{4x} (x^2) = 3 \log_{2x} (x^3)$
- 7. Match the following

Col	umn	– I

Column - II

- (A) If $\log_4(x + 1) + \log_4(x + 8) = \frac{3}{2}$, then value(s) of x is (are)
- (p) 1
- (B) If |x| + |x 5| = 6 and x < 0, then $\left(x + \frac{3}{2}\right)$ is equal to
- (q) 4
- (C) The value of $4\left(3\log_2\frac{81}{80} + 5\log_2\frac{25}{24} + 7\log_2\frac{16}{15}\right)$ is
- (r) 0
- (D) The remainder when $2x^5 x^3 + x^2 + 1$ is divided by
- (s) 2

$$(2x + 1)$$
 is k. Then $\frac{16k + 11}{16}$ is equal to

Topics : Fundamentals of Mathematics, Logarithm	Total Marks : 24	Max. Time: 23 min.	DPP.	NO15
Type of Questions			M.M	., Min.
Single choice Objective (no negative marking) Q.1,2,3	(3 m	arks, 3 min.)	[9,	9]
Multiple choice objective (no negative marking) Q.4	(5 m	arks, 4 min.)	[5,	4]
True or False (no negative marking) Q.5	(2 m	arks, 2 min.)	[2,	2]
Fill in the Blanks (no negative marking) Q.6,7	(4 m	arks, 4 min.)	[8,	8]

- $\int_{4}^{\log_{0.\overline{3}}} \left(\frac{1}{\sqrt{4+2\sqrt{3}} \sqrt{4-2\sqrt{3}}} \right)$ is simplified to. The expression E = 81 1.
 - (A) 16

(B) 4

(C) 2

(D) $\frac{1}{2}$

The complete solution set of $x - \sqrt{1 - |x|} < 0$ is 2.

(A)
$$\left[-1, \frac{-1+\sqrt{5}}{2}\right]$$

(C)
$$\left(-1, \frac{-1+\sqrt{5}}{2}\right)$$

(A)
$$\left[-1, \frac{-1+\sqrt{5}}{2}\right]$$
 (B) $[-1, 1]$ (C) $\left(-1, \frac{-1+\sqrt{5}}{2}\right)$ (D) $\left(\frac{-1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$

- If $\sqrt{1-x} > \sqrt{1+x}$, then the complete solution set of x is 3.
 - (A) $(-\infty, 0)$
- (B) [-1, 1]
- (C) (0, 1]
- (D)[-1,0)
- For the equation $\log_{3\sqrt{x}} x + \log_{3x} \sqrt{x} = 0$, which of the following do not hold good? 4.
 - (A) no real solution

(B) one prime solution

(C) one integral solution

- (D) no irrational solution
- 5. State whether the following statements are True or False.
 - If $\log_a x = \log_b y$, then each is equal to $\log_a xy$. (i)
 - The value of x satisfying the equation $log_3x + log_9x + log_{27}x = 11$ is a perfect square as well as (ii) a perfect cube
- The value of 'x' satisfying the equation, $4^{\log_2 3} + 9^{\log_2 4} = 10^{\log_x 83}$ is _____. 6.
- Real x satisfying the equation $9^{\log_3(\log_2 x)} = \log_2 x (\log_2 x)^2 + 1$ is _____. 7.