[STRAIGHT OBJECTIVE TYPE]
Q. $1 \quad$ The angles α and β are such that $\tan \alpha=m+2$ and $\tan \beta=m$ where m is a constant. If $\sec ^{2} \alpha-\sec ^{2} \beta=16$ then the value of $\cot (\alpha-\beta)$ is equal to
(A) 2
(B) 4
(C) 6
(D) 8
Q. 2 In the given figure $\mathrm{ABGH}, \mathrm{BCFG}$ and CDEF are all squares with the same side length. If $\alpha=\angle \mathrm{AEH}$ and $\beta=\angle \mathrm{AFH}$ then ($\alpha+\beta$) equals
(A) $\pi / 6$
(B) $\pi / 4$
(C) $\pi / 3$
(D) $\pi / 2$

Q. $3 \sqrt[3]{5^{\frac{1}{\log _{7} 5}}+\frac{1}{\sqrt{-\log _{10}(0.1)}}}$ simplifies to
(A) 1
(B) $\sqrt{2}$
(C) 2
(D) 8
[REASONING TYPE]
Q. 4 Statement-1: If $\mathrm{N}=\left(\frac{1}{0.4}\right)^{20}$ then N contains 7 digits before decimal.

Statement-2: Characteristic of the logarithm of N to the base 10 is 7.
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement- 2 is true and statement- 2 is NOT the correct explanation for statement- 1 .
(C) Statement- 1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.
[Use: $\log _{10} 2=0.3010$]
Q. $5 \quad$ Statement-1: If $\alpha>\beta>1$, then $\frac{\alpha^{\sqrt{\log _{\alpha} \beta}}}{\beta^{\sqrt{\log _{\beta} \alpha}}}$ is greater than 1 .

Statement-2: $\quad \log _{\mathrm{c}} \mathrm{b}=\frac{\log _{\mathrm{a}} \mathrm{b}}{\log _{\mathrm{a}} \mathrm{c}}$, if $0<\mathrm{a}, \mathrm{b}, \mathrm{c} \neq 1$.
(A) Statement- 1 is true, statement- 2 is true and statement- 2 is correct explanation for statement- 1 .
(B) Statement- 1 is true, statement- 2 is true and statement- 2 is NOT the correct explanation for statement- 1 .
(C) Statement- 1 is true, statement- 2 is false.
(D) Statement-1 is false, statement-2 is true.
(A) When the repeating decimal 0.363636 . \qquad is written as a rational fraction in the simplest form, the sum of the numerator and denominator is
(B) Given positive integer p, q and r with $\mathrm{p}=3^{\mathrm{q}} \cdot 2^{\mathrm{r}}$ and $100<\mathrm{p}<1000$.
(Q) 8 The difference between maximum and minimum values of $(q+r)$, is
(C) If $\log _{8} \mathrm{a}+\log _{8} \mathrm{~b}=\left(\log _{8} \mathrm{a}\right)\left(\log _{8} \mathrm{~b}\right)$ and $\log _{\mathrm{a}} \mathrm{b}=3$, then the value of 'a' is
(R) 15
(D) Let $\mathrm{N}=(2+1)\left(2^{2}+1\right)\left(2^{4}+1\right) \ldots \ldots \ldots\left(2^{32}+1\right)+1$ then $\log _{256} \mathrm{~N}$ equals
(S) 16
[SUBJECTIVE]
Q. 7 If $\mathrm{N}=\operatorname{antilog}\left(\log _{3}\left(\operatorname{antilog} \sqrt{3}\left(\log _{3} 81\right)\right)\right)$, then $\log _{3} \mathrm{~N}$ lies between two successive integers a and b. Find $(a+b)$.
Q. 8 Let $\mathrm{a}=\left(\log _{7} 81\right)\left(\log _{6561} 625\right)\left(\log _{125} 216\right)\left(\log _{1296} 2401\right)$
b denotes the sum of the roots of the equation $x^{\log _{2} x}=(2 x)^{\log _{2} \sqrt{x}}$
and c denotes the sum of all natural solution of the equation $|\mathrm{x}+1|+|\mathrm{x}-4|=7$.
Find the value of $(a+b) \div c$.

