

Q.4 Statement-1: If
$$N = \left(\frac{1}{0.4}\right)^{2t}$$

 $\frac{1}{0.4}$ then N contains 7 digits before decimal.

Statement-2: Characteristic of the logarithm of N to the base 10 is 7.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

(D) Statement-1 is false, statement-2 is true.

[Use: $\log_{10} 2 = 0.3010$]

Q.5 **Statement-1:** If
$$\alpha > \beta > 1$$
, then $\frac{\alpha^{\sqrt{\log_{\alpha}\beta}}}{\beta^{\sqrt{\log_{\beta}\alpha}}}$ is greater than 1.

Statement-2:
$$\log_{c} b = \frac{\log_{a} b}{\log_{a} c}$$
, if $0 < a$, b, $c \neq 1$.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

(D) Statement-1 is false, statement-2 is true.

Q.6	[MATCH THE COLUMN] Column-I			[3+3+3+3=12] Column-II	
	(A)	When the repeating decimal 0.363636 is written as a rational fraction in the simplest form, the sum of the numerator and denominator is	(P)	4	
	(B)	Given positive integer p, q and r with $p = 3^q \cdot 2^r$ and $100 .The difference between maximum and minimum values of (q + r), is$	(Q)	8	
	(C)	If $\log_8 a + \log_8 b = (\log_8 a)(\log_8 b)$ and $\log_a b = 3$, then the value of 'a' is	(R)	15	
	(D)	Let N = $(2 + 1)(2^2 + 1)(2^4 + 1) \dots (2^{32} + 1) + 1$ then \log_{256} N equals	(S)	16	

[SUBJECTIVE]

- Q.7 If N = antilog₇ (log₃ (antilog_{$\sqrt{3}$} (log₃ 81))), then log₃N lies between two successive integers a and b. Find (a + b). [4]
- Q.8 Let $a = (\log_7 81) (\log_{6561} 625) (\log_{125} 216) (\log_{1296} 2401)$ b denotes the sum of the roots of the equation $x^{\log_2 x} = (2x)^{\log_2 \sqrt{x}}$ and c denotes the sum of all natural solution of the equation |x+1| + |x-4| = 7. Find the value of $(a+b) \div c$. [6]