DPP on the path of success 😿

***Please revise all the previous 9 dpp & class room notes provided by sudhir jainam sir !!

1st Test(Based on Latest JEE mains Pattern) Syllabus:

- 1.Number System
- 2.Modulus, Exponential and logarithm equation.
- 3.Inequalities (linear, higher degree, Modulus, logarithm)

Reference books: A. I. Prilepko (Problem Book in High-School Mathematics)

S	uner_3	20		by:-	sudhir jainam MATICES	
	(NM-I)	Ū		Daily Practic	ce Problems	
Class	:XI	Time: 90 Min.		M.M:90	DPP. NO10	
	REVISE	USEFUL CO	NCEPTS	OF CLASS	X	
Q.1	$\sin 2A = 2 \sin A$ is t (A) 0°	rue when $A =$ (B) 30°	(C) 45°	(D) 60°		
Q.2	In a parallelogram, t angle, is	the measure of one angle is	s four times that of a	nother angle. The m	easure of the larger	
	(A) 144°	(B) 72°	(C) 108°	(D) 54°		
Q.3	An ice cream cone filling the cone up t	e hours in the sun, th ream (in cubic unit),	e ice cream melts, is			
	(A) $\pi \left(\frac{15}{8}\right)^2$	(B) $\frac{\pi}{3} \left(\frac{15}{8}\right)^2$	(C) $\pi \left(\frac{8}{15}\right)^2$	(D) $\frac{\pi}{3} \left(\frac{8}{15} \right)$	2	
Q.4	The polynomial >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	$x^4 - 5x^3 + 5x^2 + 5x - 6$	and $x^4 + 6x^3 + 9$	$x^2 - 4x - 12$ have a	a common factor.	
	(A) x - 2	(B) $x + 1$	(C) x – 1	(D) x + 2		
Q.5	A pencil is essentially a cylinder surmounted by a cone. The cylinder has radius 2 mm and is 15 cm long. The length of the entire pencil is 16 cm. The volume of the pencil (in cubic millimeters), is					
	$(A) \ \frac{1460\pi}{3}$	$(B) \frac{1440\pi}{3}$	$(C) \ \frac{1400\pi}{3}$	(D) $\frac{1840\pi}{3}$		
Q.6	Let $x = 2 + \frac{3}{3 + 2}$	$\frac{1}{1} + \frac{1}{3 + $				
		$2 + \frac{1}{3 + \dots}$				
	Then x equals					
	(A) $1 + \frac{1}{3}\sqrt{15}$	(B) $1 - \frac{1}{3}\sqrt{15}$	(C) $\frac{1}{3} + \frac{1}{3}\sqrt{15}$	(D) $\frac{1}{3} + \sqrt{1}$	0	
Q.7	$\sec^4 A - \sec^2 A$ is eq (A) $\tan^2 A - \tan^4 A$	$(B) \tan^4 A - \tan^2 A$	(C) $\tan^4 A \cdot \tan^2$	^{2}A (D) $\tan^{2}A$ +	- tan ⁴ A	
Q.8	In figure, the perim	eter of $\triangle ABC$ is	A			
	(A) 30 cm	(B) 60 cm	-9°	R 4 cm		
	(C) 45 cm	(D) 15 cm	в	$P \leftarrow 5 \text{ cm} \rightarrow C$		
Q.9	If $y^2 + my + 2$ is di (A) 0	vided by y+1 or by y- (B) 1	- 1, the remainder (C) 2	are equal. The value (D) – 1	e of m, is	

Q.10 If m is a perfect square, then the next larger perfect square is

(A) $m + 2\sqrt{m} + 1$ (B) $m^2 + 2m + 1$ (C) m + 1 (D) $\sqrt{m} + 1$

- Q.11 If 2 is a root of the equation $x^2 + bx + 12 = 0$ and the equation $x^2 + bx + q = 0$ has equal roots, then q =
- (A) 8 (B) 8 (C) 16 (D) 16Q.12 The radius of a circle is 12. Chord C lies in the circle and is a perpendicular bisector of a radius. How long is the chord C?

(A) $12\sqrt{3}$ (B) 27 (C) $6\sqrt{3}$ (D) $3\sqrt{3}$

Q.13 If 3 men can load 21 trucks in 14 hours, how many hours will it taken 5 men to load 20 trucks? Assume that all the men work at the same speed and do not interfere with each other.

(A)
$$8\frac{2}{5}$$
 (B) $7\frac{1}{2}$ (C) $24\frac{1}{2}$ (D) 8

Q.14 If p is the perimeter of an equilateral triangle inscribed in a circle, then the area of the circle, is

(A)
$$\frac{\pi p^2}{9}$$
 (B) $\frac{\pi p^2}{81}$ (C) $\frac{\pi p^2}{27}$ (D) $\frac{\pi p^2 \sqrt{3}}{27}$

Q.15 The value of x, satisfying the $(2)^{(4^x)} = (4)^{(2^x)}$, is

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) 1 (D) 3

- Q.16 If $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$, then $(p^2 q^2) =$ (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) b - a
- Q.17 Number of real solutions of the equation $|x+2| = x^2$, is (A) 1 (B) 2 (C) 3 (D) 4
- Q.18 In figure, AP is a tangent to the circle with centre O such that OP = 4 cm and $\angle OPA = 30^{\circ}$. Then, AP =
 - (A) $2\sqrt{2}$ cm (B) 2 cm (C) $2\sqrt{3}$ cm (D) $3\sqrt{2}$ cm

(A) 5

(D)4

Q.19 Suppose a and b are the roots of the equation $x^2 + x - 1 = 0$. The value of $\frac{1}{a^2} + \frac{1}{b^2}$, is

Q.20 The value of the expression, $E = \frac{\cos x}{1 - \sin x} + \frac{\cos x}{1 + \sin x}$, is

(B) 3

(A)
$$\frac{2}{\cos x}$$
 (B) $\sin x - \cos x$ (C) $\sin x + \tan x$ (D) $2 \cos x$.

(C) 6

Q.21	Jake's age is X years, which is also the sum of the ages of his two children. His age Y years ago was						
	twice the sum of their ages, then $\frac{X}{Y}$, is						
	(A) 2	(B) 3	(C) $\frac{3}{2}$	(D) $\frac{4}{3}$			
Q.22	$9\sec^2 A - 9\tan^2 A$ is equal to						
	(A) 1	(B) 9	(C) 8	(D) 0			
Q.23	The number of real solutions of the equation $\left(\frac{x^2 + 4x}{5}\right)^{x^2 - 3x + 2} = 1$, is						
	(A) 0	(B) 1	(C) 2	(D) 3			
Q.24	Write the repeating decimal 0.3727272 as a fraction.						
	(A) $\frac{372}{999}$	(B) $\frac{38}{101}$	(C) $\frac{136}{495}$	(D) $\frac{41}{110}$			
Q.25	The price of an item is increased by $\frac{1}{3}$. But the revenue keeps unchanged. By the percentage did the						
	sales reduce? (A) 10%	(B) 15%	(C) 20%	(D) 25%			
Q.26	In figure, if PR is tan circle, then $\angle POQ =$ (A) 110° (C) 120°	gent to the circle at P ar	nd O is the centre of the (B) 100° (D) 90°	P R R O O O R			
Q.27	If $\sin 3\theta = \cos (\theta - 14)$ (A) 29°	 e^o) where 3θ is acute ang (B) 26^o 	gle, then θ is (C) 24°	(D) 21°			
Q.28	Suppose that x and y are positive number with $xy = \frac{1}{9}$; $x(y+1) = \frac{7}{9}$; $y(x+1) = \frac{5}{18}$ The value of $(x + 1)(y + 1)$ equals						
	The value of $(x + 1)$	y + 1) equais	10	35			
	(A) $\frac{6}{9}$	(B) $\frac{10}{9}$	(C) $\frac{10}{9}$	(D) $\frac{35}{18}$			
Q.29	Number of real solution(s) of the equation $\sqrt{1 - \sqrt{1 - x}} = x$, is (A) 0 (B) 1 (C) 2 (D) more then two						
	$(\mathbf{A})0$	(b) I	(\mathbf{C}) 2	(D) more than two			
Q.30	Express the rational r (A) 2	number $S = cos^2(10^\circ) + (B) 3$	$\cos^2(20^\circ) + \cos^2(30^\circ) + (C) 4$	$\dots + \cos^2(80^\circ)$ in lowest terms. (D) 5			
Q.31	If the sum of the roots of the equation $x^2 - (k+6)x + 2(2k-1) = 0$ is equal to half of their product, then $k =$						
	(A) 6	(B) 7	(C) 1	(D) 5			

(D) 100°

Q.42 In figure, AB and CD are parallel lines and transversal EF intersects them at P and Q respectively. If $\angle APR = 25^{\circ}$, $\angle RQC = 30^{\circ}$ and $\angle CQF = 65^{\circ}$, then (A) $x = 55^{\circ}$, $y = 40^{\circ}$ (B) $x = 50^{\circ}$, $y = 45^{\circ}$ (C) $x = 60^{\circ}$, $y = 35^{\circ}$ (D) $x = 35^{\circ}$, $y = 60^{\circ}$

3 cm

5 cm

Q.43 In figure, the measure of $\angle B'A'C'$ is

(D) 80°

- Q.44 In figure, if AC is bisector of $\angle BAD$ such that AB = 3 cm and AC = 5 cm, then CD = (A) 2 cm (B) 3 cm
 - (C) 4 cm
 - (D) 5 cm
- Q.45 The circumference of a circle is 100 cm. The side of a square inscribed in the circle is

(A)
$$50\sqrt{2}$$
 cm (B) $\frac{100}{\pi}$ cm (C) $\frac{50\sqrt{2}}{\pi}$ cm (D) $\frac{100\sqrt{2}}{\pi}$ cm