DPP on the path of success

***Please revise all the previous 9 dep \& class room notes provided by sudhir jainam sir !!
1st Test(Based on Latest JEE mains Pattern) Syllabus:
1.Number System
2.Modulus,Exponential and logarithm equation.
3.Inequalities (linear,higher degree,Modulus,logarithm)

Reference books: A. I. Prilepko (Problem Book in High-School Mathematics)

REVISE USEFUL CONCEPTS OF CLASS X

Q. $1 \sin 2 \mathrm{~A}=2 \sin \mathrm{~A}$ is true when $\mathrm{A}=$
(A) 0°
(B) 30°
(C) 45°
(D) 60°
Q. 2 In a parallelogram, the measure of one angle is four times that of another angle. The measure of the larger angle, is
(A) 144°
(B) 72°
(C) 108°
(D) 54°
Q. 3 An ice cream cone has a radius of 5 and a height of 8 . After five hours in the sun, the ice cream melts, filling the cone up to height of 3 . The volume of the melted ice cream (in cubic unit), is
(A) $\pi\left(\frac{15}{8}\right)^{2}$
(B) $\frac{\pi}{3}\left(\frac{15}{8}\right)^{2}$
(C) $\pi\left(\frac{8}{15}\right)^{2}$
(D) $\frac{\pi}{3}\left(\frac{8}{15}\right)^{2}$
Q. 4 The polynomial $x^{4}-5 x^{3}+5 x^{2}+5 x-6$ and $x^{4}+6 x^{3}+9 x^{2}-4 x-12$ have a common factor. The common factor, is
(A) $\mathrm{x}-2$
(B) $x+1$
(C) $\mathrm{x}-1$
(D) $\mathrm{x}+2$
Q. 5 A pencil is essentially a cylinder surmounted by a cone. The cylinder has radius 2 mm and is 15 cm long. The length of the entire pencil is 16 cm . The volume of the pencil (in cubic millimeters), is
(A) $\frac{1460 \pi}{3}$
(B) $\frac{1440 \pi}{3}$
(C) $\frac{1400 \pi}{3}$
(D) $\frac{1840 \pi}{3}$
Q. 6 Let $\mathrm{x}=2+\frac{1}{3+\frac{1}{2+\frac{1}{3+\frac{1}{2+\frac{1}{3+\ldots ~}}}}}$

Then x equals
(A) $1+\frac{1}{3} \sqrt{15}$
(B) $1-\frac{1}{3} \sqrt{15}$
(C) $\frac{1}{3}+\frac{1}{3} \sqrt{15}$
(D) $\frac{1}{3}+\sqrt{10}$
Q. $7 \quad \sec ^{4} \mathrm{~A}-\sec ^{2} \mathrm{~A}$ is equal to
(A) $\tan ^{2} \mathrm{~A}-\tan ^{4} \mathrm{~A}$
(B) $\tan ^{4} \mathrm{~A}-\tan ^{2} \mathrm{~A}$
(C) $\tan ^{4} \mathrm{~A} \cdot \tan ^{2} \mathrm{~A}$
(D) $\tan ^{2} \mathrm{~A}+\tan ^{4} \mathrm{~A}$
Q. 8 In figure, the perimeter of $\triangle \mathrm{ABC}$ is
(A) 30 cm
(B) 60 cm
(C) 45 cm
(D) 15 cm

Q. 9 If $y^{2}+m y+2$ is divided by $y+1$ or by $y-1$, the remainder are equal. The value of m, is
(A) 0
(B) 1
(C) 2
(D) -1
Q. 10 If m is a perfect square, then the next larger perfect square is
(A) $m+2 \sqrt{m}+1$
(B) $\mathrm{m}^{2}+2 \mathrm{~m}+1$
(C) $m+1$
(D) $\sqrt{\mathrm{m}}+1$
Q. 11 If 2 is a root of the equation $x^{2}+b x+12=0$ and the equation $x^{2}+b x+q=0$ has equal roots, then $\mathrm{q}=$
(A) 8
(B) -8
(C) 16
(D) -16
Q. 12 The radius of a circle is 12 . Chord C lies in the circle and is a perpendicular bisector of a radius. How long is the chord C ?
(A) $12 \sqrt{3}$
(B) 27
(C) $6 \sqrt{3}$
(D) $3 \sqrt{3}$
Q. 13 If 3 men can load 21 trucks in 14 hours, how many hours will it taken 5 men to load 20 trucks? Assume that all the men work at the same speed and do not interfere with each other.
(A) $8 \frac{2}{5}$
(B) $7 \frac{1}{2}$
(C) $24 \frac{1}{2}$
(D) 8
Q. 14 If p is the perimeter of an equilateral triangle inscribed in a circle, then the area of the circle, is
(A) $\frac{\pi \mathrm{p}^{2}}{9}$
(B) $\frac{\pi \mathrm{p}^{2}}{81}$
(C) $\frac{\pi \mathrm{p}^{2}}{27}$
(D) $\frac{\pi \mathrm{p}^{2} \sqrt{3}}{27}$
Q. 15 The value of x, satisfying the $(2)^{\left(4^{x}\right)}=(4)^{\left(2^{x}\right)}$, is
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) 1
(D) 3
Q. 16 If a $\cot \theta+b \operatorname{cosec} \theta=p$ and $b \cot \theta+\operatorname{acosec} \theta=q$, then $\left(p^{2}-q^{2}\right)=$
(A) $a^{2}-b^{2}$
(B) $\mathrm{b}^{2}-\mathrm{a}^{2}$
(C) $a^{2}+b^{2}$
(D) $\mathrm{b}-\mathrm{a}$
Q. 17 Number of real solutions of the equation $|x+2|=x^{2}$, is
(A) 1
(B) 2
(C) 3
(D) 4
Q. 18 In figure, AP is a tangent to the circle with centre O such that $\mathrm{OP}=4 \mathrm{~cm}$ and $\angle \mathrm{OPA}=30^{\circ}$. Then, $\mathrm{AP}=$
(A) $2 \sqrt{2} \mathrm{~cm}$
(B) 2 cm
(C) $2 \sqrt{3} \mathrm{~cm}$

(D) $3 \sqrt{2} \mathrm{~cm}$
Q. 19 Suppose a and b are the roots of the equation $x^{2}+x-1=0$. The value of $\frac{1}{a^{2}}+\frac{1}{b^{2}}$, is
(A) 5
(B) 3
(C) 6
(D) 4
Q. 20 The value of the expression, $E=\frac{\cos x}{1-\sin x}+\frac{\cos x}{1+\sin x}$, is
(A) $\frac{2}{\cos x}$
(B) $\sin x-\cos x$
(C) $\sin x+\tan x$
(D) $2 \cos x$.
Q. 21 Jake's age is X years, which is also the sum of the ages of his two children. His age Y years ago was twice the sum of their ages, then $\frac{X}{Y}$, is
(A) 2
(B) 3
(C) $\frac{3}{2}$
(D) $\frac{4}{3}$
Q. $22 \quad 9 \sec ^{2} \mathrm{~A}-9 \tan ^{2} \mathrm{~A}$ is equal to
(A) 1
(B) 9
(C) 8
(D) 0
Q. 23 The number of real solutions of the equation $\left(\frac{x^{2}+4 x}{5}\right)^{x^{2}-3 x+2}=1$, is
(A) 0
(B) 1
(C) 2
(D) 3
Q. 24 Write the repeating decimal 0.3727272 . \qquad as a fraction.
(A) $\frac{372}{999}$
(B) $\frac{38}{101}$
(C) $\frac{136}{495}$
(D) $\frac{41}{110}$
Q. 25 The price of an item is increased by $\frac{1}{3}$. But the revenue keeps unchanged. By the percentage did the sales reduce?
(A) 10%
(B) 15%
(C) 20%
(D) 25%
Q. 26 In figure, if PR is tangent to the circle at P and O is the centre of the circle, then $\angle \mathrm{POQ}=$
(A) 110°
(B) 100°
(C) 120°
(D) 90°
Q. 27 If $\sin 3 \theta=\cos \left(\theta-14^{\circ}\right)$ where 3θ is acute angle, then θ is

(A) 29°
(B) 26°
(C) 24°
(D) 21°
Q. 28 Suppose that x and y are positive number with $\mathrm{xy}=\frac{1}{9} ; \mathrm{x}(\mathrm{y}+1)=\frac{7}{9} ; \mathrm{y}(\mathrm{x}+1)=\frac{5}{18}$ The value of $(x+1)(y+1)$ equals
(A) $\frac{8}{9}$
(B) $\frac{16}{9}$
(C) $\frac{10}{9}$
(D) $\frac{35}{18}$
Q. 29 Number of real solution(s) of the equation $\sqrt{1-\sqrt{1-x}}=x$, is
(A) 0
(B) 1
(C) 2
(D) more than two
Q. 30 Express the rational number $S=\cos ^{2}\left(10^{\circ}\right)+\cos ^{2}\left(20^{\circ}\right)+\cos ^{2}\left(30^{\circ}\right)+\ldots .+\cos ^{2}\left(80^{\circ}\right)$ in lowest terms.
(A) 2
(B) 3
(C) 4
(D) 5
Q. 31 If the sum of the roots of the equation $\mathrm{x}^{2}-(\mathrm{k}+6) \mathrm{x}+2(2 \mathrm{k}-1)=0$ is equal to half of their product, then $\mathrm{k}=$
(A) 6
(B) 7
(C) 1
(D) 5
Q. 32 In the figure, O is the center of the circle. If $\mathrm{AB}=5$, the area of the circle, is
(A) 5π
(B) 10π
(C) 20π

(D) 25π
Q. 33 Which of the following is equal to $\sqrt[3]{108}$?
(A) $2 \sqrt[3]{9}$
(B) $4 \sqrt[3]{3}$
(C) $3 \sqrt[3]{4}$
(D) $6 \sqrt[3]{2}$
Q. 34 Let S be the set of all multiples of 6 . Which of the following are subsets of S ?
I. The set of all multiples of 3 .
II. The set of all multiples of 9 .
III. The set of all multiples of 12 .
(A) I only
(B) III only
(C) I and III only
(D) II and III only.
Q. 35 In figure, PQ and PR are tangents drawn from P to a circle with centre O . If $\angle \mathrm{OPQ}=35^{\circ}$, then
(A) $\mathrm{a}=30^{\circ}, \mathrm{b}=60^{\circ}$
(B) $\mathrm{a}=35^{\circ}, \mathrm{b}=55^{\circ}$
(C) $\mathrm{a}=40^{\circ}, \mathrm{b}=50^{\circ}$
(D) $\mathrm{a}=45^{\circ}, \mathrm{b}=45^{\circ}$

Q. 36 If $x^{2}+y^{2}=10$ and $x^{2}-y^{2}=1$, then the value of $|x y|$, is
(A) $\frac{3 \sqrt{11}}{2}$
(B) 5
(C) $3 \sqrt{3}$
(D) $\frac{21}{4}$
Q. 37 The perimeter of an isosceles right triangle having an area of 18 , is
(A) $12(4-\sqrt{2})$
(B) $6(2+\sqrt{2})$
(C) $18 \sqrt{2}-1$
(D) $16 \sqrt{2}$
Q. 38 If one root of the equation $2 x^{2}+k x+4=0$ is 2 , then the other root is
(A) 6
(B) -6
(C) -1
(D) 1
Q. 39 In figure if $\mathrm{AB} \perp \mathrm{BC}$, then x is equal to
(A) 18
(B) 22
(C) 25
(D) 32

Q. 40 In figure, for which value of x is $l_{1} \| l_{2}$?
(A) 37
(B) 43
(C) 45
(D) 47

Q. 41 In $\triangle \mathrm{RST}$ (see in figure), what is the value of x ?
(A) 40°
(B) 90°
(C) 80°

(D) 100°
Q. 42 In figure, AB and CD are parallel lines and transversal EF intersects them at P and Q respectively. If $\angle \mathrm{APR}=25^{\circ}, \angle \mathrm{RQC}=30^{\circ}$ and $\angle \mathrm{CQF}=65^{\circ}$, then
(A) $\mathrm{x}=55^{\circ}, \mathrm{y}=40^{\circ}$
(B) $x=50^{\circ}, y=45^{\circ}$
(C) $x=60^{\circ}, y=35^{\circ}$

(D) $x=35^{\circ}, y=60^{\circ}$
Q. 43 In figure, the measure of $\angle \mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is

(A) 50°
(B) 60°
(C) 70°
(D) 80°
Q. 44 In figure, if AC is bisector of $\angle \mathrm{BAD}$ such that $\mathrm{AB}=3 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$, then $\mathrm{CD}=$
(A) 2 cm
(B) 3 cm
(C) 4 cm
(D) 5 cm

Q. 45 The circumference of a circle is 100 cm . The side of a square inscribed in the circle is
(A) $50 \sqrt{2} \mathrm{~cm}$
(B) $\frac{100}{\pi} \mathrm{~cm}$
(C) $\frac{50 \sqrt{2}}{\pi} \mathrm{~cm}$
(D) $\frac{100 \sqrt{2}}{\pi} \mathrm{~cm}$

