DPP#7,8&9_ANS.pdf

[STRAIGHT OBJECTIVE TYPE]

 $[4 \times 3 = 12]$

- The value of $\log_2((\log_{81} 3)^{\log_3 81})$ is equal to Q.1
 - (A*) 8
- (B) $-4 \log_2 3$ (C) 8

- $(D) 4 \log_3 2$
- The real x and y satisfy simultaneously $\log_8 x + \log_4 y^2 = 5$ and $\log_8 y + \log_4 x^2 = 7$ then the value of xy Q.2 is equal to
 - $(A*) 2^9$
- (B) 2^{12}
- $(C) 2^{18}$
- (D) 2^{24}

- Number of digits in $4^{16} \cdot 5^{25}$ is (use $\log_{10} 2 = 0.3010$) Q.3
 - (A) 27

- (B*) 28

- (D) 30
- Number of real x satisfying the equation |x-2|+|x-3|=|x-1| is Q.4
 - (A) 1

Q.6

- (B*) 2
- (C) 3

(D) more than 3

[MULTIPLE OBJECTIVE TYPE]

 $[1 \times 4 = 4]$

- The expression, $\log_p \log_p \sqrt[p]{\sqrt[p]{\dots, \sqrt[p]{p}}}$ where $p \ge 2$, $p \in \mathbb{N}$, when simplified is Q.5 n radical sign
 - (A*) independent of p, but dependent on n
- (B) independent of n, but dependent on p

(C) dependent on both p & n

(D*) negative.

[MATCH THE COLUMN]

[3+3+3+3=12]

Column-II

1

Column-I

If $4^{x} - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-1}$ then (2x) equals (A)

(P)

The number of solutions of $\log_7 \log_5 (\sqrt{x+5} + \sqrt{x}) = 0$ is (B)

(Q)

(C) The number of values of x such that the middle term of

- 3 (R)
- $\log_3 2$, $\log_3 (2^x 5)$, $\log_3 \left(2^x \frac{7}{2}\right)$ is the average of the other two is
- (S) 4

(D) If α , β are the roots of the equation

$$x^{2} - \left(3 + 2^{\sqrt{\log_{2} 3}} - 3^{\sqrt{\log_{3} 2}}\right)x - 2\left(3^{\log_{3} 2} - 2^{\log_{2} 3}\right) = 0 \text{ then } 2(\alpha + \beta) - \alpha\beta \text{ equals}$$

[Ans. (A) R; (B) P; (C) P; (D) S]

[SUBJECTIVE]

- The circumference of a circle circumscribing an equilateral triangle is 24π units. Find Q.7
 - (a) the area of the circle inscribed in the equilateral triangle.
 - (b) area of the equilateral triangle inscribed in the inner circle.

[3+3]

[Ans. (a) 36π , (b) $27\sqrt{3}$]

If $0 < x < \frac{\pi}{4}$ and $\cos x + \sin x = \frac{5}{4}$, find the numerical values of $\cos x - \sin x$. Q.8 [5]