[STRAIGHT OBJECTIVE TYPE]

 $[4 \times 3 = 12]$

Let $x = 2^{\log 3}$ and $y = 3^{\log 2}$ where base of the logarithm is 10, then which one of the following holds Q.1 good?

(B)
$$2y < x$$

(C)
$$3x = 2y$$

$$(D^*)y = x$$

Which one of the following is the smallest? Q.2

$$(A^*) \log_{10} \pi$$

(B)
$$\sqrt{\log_{10} \pi^2}$$

(C)
$$\left(\frac{1}{\log_{10} \pi}\right)^3$$

(A*)
$$\log_{10}\pi$$
 (B) $\sqrt{\log_{10}\pi^2}$ (C) $\left(\frac{1}{\log_{10}\pi}\right)^3$ (D) $\left(\frac{1}{\log_{10}\sqrt{\pi}}\right)$

Q.3 If $x = log_k b = log_b c = \frac{1}{2} log_c d$ then $log_k d$ equals

(A*)
$$2x^3$$
 (B) $\frac{x^3}{2}$

(B)
$$\frac{x^3}{2}$$

(C)
$$2x^8$$

The number $N = 6 \log_{10} 2 + \log_{10} 31$, lies between two successive integers whose sum is equal to Q.4 (A) 5(B*)7(D) 10

[MULTIPLE OBJECTIVE TYPE]

 $[2 \times 4 = 8]$

Q.5 Select the correct statement.

(A)
$$\log_3 19 \cdot \log_{1/7} 3 \cdot \log_4 \left(\frac{1}{7}\right) < 2$$

(B*) The equation $\log_{1/3}(x^2+8) = -2$ has two real solutions.

(C) Let $N = log_2 15 \cdot log_{1/6} 2 \cdot log_3 \left(\frac{1}{6}\right)$. The greatest integer which is less than or equal to N is 3.

(D*) The equation $\log_4 x + \log_4 (x+2) = \log_4 (3x)$ has no prime solution.

The equation $\frac{\log_8(8/x^2)}{(\log_8 x)^2} = 3$ has Q.6

(A) no integral solution

(B*) one natural solution

(C*) two real solutions

(D) one irrational solution

[MATCH THE COLUMN]

[3+3+3+3=12]

Column-I Q.7 Column-II

If x_1 and x_2 satisfy the equation $x^{\log_{10} x} = 100x$ (A) then the value of x_1x_2 equals

(P) irrational

Sum of the squares of the roots of the equation (B) $\log_2(9-2^x) = 3-x$ is

(Q) rational

If $\log_{1/8} (\log_{1/4} (\log_{1/2} x)) = \frac{1}{3}$ then x is (C)

(R) prime

If $\log_b a = 3$, $\log_b c = -4$. If the value of x satisfying the (D) equation $a^{3x} = c^{x-1}$ is expressed in the form p/q, where p and q are relatively prime then p + q is

(S) composite

[Ans. (A) Q, S; (B) Q, S; (C) P; (D) Q, R]

[SUBJECTIVE]

A polynomial in x of degree three vanishes when x = 1 and x = -2, and has the values 4 and 28 Q.8 when x = -1 and x = 2 respectively. Find the polynomial. [4]

[Ans. (x-1)(x+2)(3x+1)]